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THE BARNETT APPROXIMATION IN THE THEORY OF HYDRODYNAMIC FLUCTUATIONS* 

V.V. TOKARCHUK 

The Langevin dynamics and fluctuational-dissipative relationships for 
the hydrodynamic fluctuations for systems which are described in the 
third Barnett order with respect to the gradients of the hydrodynamic 
variables are generalized on the basis of a kinetic approach. 

We know /l-3/ that, in the case of slow non-isothermal gas flows, the Navier-Stokes- 
Fourier (NSF) terms and certain Barnett terms in the hydrodynamic equations are of the same 
order of magnitude and form the basic asymptotic approximation to the solution to an equal 
extent. In the case of such flows the dynamics of the mean values of the hydrodynamic 
variables are still described by equations which are of the third Barnett order with respect 
to the gradients /l-3/. This result generates a natural "response" in the theory of non- 
equilibrium hydrodynamic fluctuations. In fact, the question arises in this theory as to 
whether the existing equations, that is, equations which have been linearized with respect to 
fluctuations around a stable non-equilibrium state of the NSF equation with Langevin local 
equilibrium sources /4/ in the Landau-Lifshitz form for the description of the fluctuations 
in the flows considered in /l-3/, are suitable. In order to answer this question, it is 
necessary to solve two problems: to construct the Langevin equations for the dynamics of the 
fluctuations in the third Barnett approximation with respect to the gradients and to estimate 
the contribution of the new terms both to the dynamical operator and to the Langevin source 
of fluctuations. The first of these problems will be solved below. 

The results in /5, 6/ are generalized and supplemented in this paper. In particular, it 
will be shown that the contributions to the Landau-Lifshitz formulae, which are linear with 
respect to the gradients, are generated by the Barnett non-equilibrium of the system. 

1. Langevin description of small fluctuations of hydrodynamic variabtes. Let us consider 
a one-component, non-equilibrium gas and write the transport equations in its hydrodynamic 
variables in the tensor form 

am,,/ot = 0, I@,], p = 0, 1, . . ., 4 

Here, @p = (n, uK, e) is a five-dimensional vector, the components of which are the mean values 
of the hydrodynamic variables: n is the density, z+(k = 1,2,3) are the three components of 
the hydrodynamic velocity,. e=3kTi2 is the thermal energy (k is Boltzmann's constant and 
T is the temperature) and 0, is the dynamic operator with the components 

0, = -VCinui, 0, = - &ViUk -pp-'vJIi, 

0, = - uivie - n-rViQi - n-'rIijVjui, p==mn 

where I&j is the pressure tensor and qi is the thermal flux vector. 
In the NSF approximation we have 

n, = njy = pwjij + py, qi = q?, py = - 2qE$7,ul, 

qW 
I = - XViT, I?,:' = 1/2(8kiSlj + g&jSli)- '/g&l&j~ i, j, k, 1 = 1,2, 3 

where $0) is the pressure, n is the viscosity and h is the thermal conductivity. Using 
this notation the system of Langevin equations for the hydrodynamic fluctuations 
6u,,6e) has the form 

I?@, = (6n, 

am& - e;,, [@16@, = 6G, (I.11 

Here, 0;,, is a linearized dynamic operator,the action of which on an abitrary function 

of the coordinates cp(') has the form 

0;,.cp(r) = S dr'cp(r')(80, [a; rl/8% (r')) 
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Here and subsequently, summation from 0 to 4 is carried out over repeated Greek indices. 
The inhomogeneous term 66, is a Langevin random Gaussian source of hydrodynamic fluctuations 
with a zero mean value and the components 

8G,=O, 6Gk = - p-'VJPirv 6G, = -- OV$Qi- n-18PijVjUi 

and the correlation functions 

<Gc (1) @t (2)) = ~PJ’VI*VZQ c6'ik (1) 6Pjl@))7 <@k (1) 6G, (2)) = 
(plnJ1vlivzj (6Pik (1) SQj (2)) + (PI%)-’ (V&i) Vlt (6plk (1) 8Pij (2)) 

<hGa (1) 6Gd (2)) = (wP {VldV;j <SQi (1) SQj (2)) + 
(SJ’ij (1) 6pkl (2)) (VI&j) tv!4Zuk) f (VzjW) VII <SQl(i) 6pij (2)) + 

(Vljui) V~I (6Pij (1) SQL (2))lt (1) 3 (tlq rl)t (2) 3 (tzv ~2) 

(1.2) 

Summation from 1 to 3 is carried out over repeated Latin indices. 
The quantities 6Pij and 6Qi are the fluctuating components of the stress tensor 

6pij = s'(pir) + 6Pij and the thermal flux vector 6qi = 6' (qi) + 6Qi respectively, where 6' is a 
linearizing operator with respect to the fluctuations. For example, 

&(n-‘Viqi) .= - n-%nViqi + n-'V&i 

It follows from expression (1.2) that the lowest order of the pair correlators of the 
Langevin sources is second order with respect to the gradients. A Langevin source makes a 
contribution of the same order to the solution of the system of Eqs.(l.l). 

Actually, since the pair correlator t6@,,(1)6m,(Z)) is the required object when investi- 
gating the dynamics of Gaussian thermal fluctuations, the required proof now follows from 
the formal solution of system (1.1) of the form 

tb@,, (& r1) 8(P, (t* 5)) = =P i--t re;, a @I)+ e;, p (ra)]) G(D,(O, n) q (0, r2)> $ 

s 
& exP:(- @ - 7) re;, a @I) + e;, B (?2)1~ (OC,’ (T, r1) w$’ (G n)> 

II 

where the B-like nature of the time correlation 

'<SC, (~1, ~1) 6Gg (%, m)> = 6 (~1 - ~2) W, (~1, r,) 6Gg' @x. r& 

has been made use of. 
At the present time the Langevin dynamics of the fluctuations of hydrodynamic variables 

have been fairly fully investigated in the equilibrium state and in the region of non- 
equilibrium states which are described in the NSF approximation /7, 0/. In this approximation, 
we have 

s;,, = o;,),v[v] + e;);[V*] 

where p @Cl) is an Euler operator which is linear with respect to the gradients with the com- 
ponents 

SF' = - Vinui, ep' = -UiViUk -p-'V,pCO) 

@(l) = - uiVie - ;2+p(O)V. 4 &Z 

and g(2) 

ponent: 
is an NSF operator which is bilinear with respect to the gradients with the com- 

@' =o, Q(k) = - p-'V,&', @p' -_ - n-'V&' - n-'p#71uk 

and 6Pij = @', SQ, = SO? are the fluctuating components of the thermodynamic fluxes which 

satisfy the locally equilibrium Landau-Lifshitz formulae /7, S/ 

(6P'q'(i)tiPg'(2)) = 6 (1 - 2) E:f,E$4n-'(l) p@)(2)q(T)6,,, 

<SQp' (l)SQp' (2)) = 6 (1 - 2)6+j2n-' (I)$') (l)T (1)h (2') 

<6Q'i0' (1)6P$ (2)) = <6Q:" (1)) = <6P@ (I)) = 0 
6 (1 - 2) = 6 (tl - &)?I (rl - r2) 

(1.3) 

In a state of thermodynamic equilibrium @;,, = @~~;I~W=cona~t 
@)p = const in formulae (1.3). 

and it is necessary to put 

One of the possible generalizations of the linear theory of non-equilibrium hydrodynamic 
fluctuations involves extending the domain of its applicability beyond the limits of the NSF 
approximation. By analogy with the hydrodynamics of mean values, let us construct the 
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dynamical equations for the fluctuations of the hydrodynamic variables in the domain of states 
which is described by the following Barnett approximation, that is, in the third order with 
respect to the gradients. Inorder to do this we shall use a kinetic approach in conjunction 
with a modified scheme for the Chapman-Enskog (CE) method. 

2. Basic kinetic equatGns and the formulation of the problem. In the domain of non- 
equilibrium stable states of the gas, the evolution of the thermal fluctuations of the macro- 
density 6N = N-F, F = (N)(N(t,x) is the random macrodensity field, 5 = (r, v)) obeys the 
system of kinetic equations /7/ 

(al& + uiVi)6N = J,' (F)6N + 61 (2.1) 
(a/at + ,Vi) F = J, (F, F) 

Here, J, (F, F) and J,‘(F) are the integral and linearized Boltzmann collision operators 
respectively and 61 is an external random source of fluctuations. The latter is a random 
Gaussian process with zero mean and a correlation function of the form 

<aJ (h, XI) 61 (tz, 4) = 6 (1 - 2) (6 (Y - ~2) Jv, (F, F) -i- (2.2) 
J,,,, (F, F) - IJ,,’ (F) + J,,’ (F)l F6 (VI - uz)} = 6 (l-2)1 IF, F] 

where J,,,,, (F, F) is the unintegrated collision integral /7/. 
Let us now introduce a system of additive collision invariants Yy, (p = 0, 1, . . ., 4) with 

the components 
Y,, = (1; neiCw, k = 1, 2, 3; .-‘(‘/+C2 - e)}, ck = uk - uk 

With the aid of this system, we represent the fluctuations of the hydrodynamic variables 
in the form 

6n (t, r) = S duY$N, 6u, (t, r) = s dUY$n (2.3) 

6e (t, r) = S duY’,hN, 6N = 6N (t, x) 

We obtain the system of transport equations for the hydrodynamic fluctuations by calcu- 
lating the moments of the first equation of (2.1) in velocity space. By taking account of 
expression (2.3) and the orthogonality of the realizations of the random field 61 to the 
collision invariants (SduY,hZ = 0), we find 

&Sn/f% + 6’ (V,nu,) = 0 

asu,/at + 6’ (UiViUk) = -6’ (p-V,rI,,) 

Helf3t + 6’ (uiO,e) = -6’ (n-‘Viqi + n-'IIijCjUi) + 

(2.4) 

n-‘Vi(bUj) (II,, + ‘lZpco)6i~) 

The mean values of the thermal flux, the pressure tensor 
defined by the expressions 

and their fluctuations are 

qk (t, r) = S du’,/,mc*c,F (t, z), &qk (t, r) = S du’!,mcZc,6N (t, x) (2.5) 

nk, (t, r) = S dumc,c,F (t, z), 6nk, (t, r) = S dumckc,6N (t, x) 

For the closure of the transport Eqs.(2.4), it is necessary to solve two problems: to 
find the functional dependence of qk and nk, on ($ and the functional dependence of 6%: 
and 6&, on Q& and &D,. The first of these problems is solved by constructing the normal 
solutions of the Boltzmann equation (the second equation of (2.1)). The Chapman-Enskog method, 
up to the third order terms with respect to the gradients, yielded the Fourier and Newton 
relationships and the Barnett additions to them. We use the same method to solve the second 
problem. In order to do this, we pass, in Eqs.(2.1), to the dimensionless variables and func- 
tions which are characteristic for the hydrodynamic regime 

tc = twL-‘, rc = rL-1, uG = uw-‘, FC = Fu?n-’ 

(L is the characteristic hydrodynamic scale of length and w is the mean thermal velocity 
of a particle). The dimensions of the Gaussian fields are determined in terms of their second 
moments /5/ 

SNG = 6NwP (L%-I)-“*, 6ZG = 61 IL2~u2 (Zn-‘)‘/~l-’ 

(1 is the mean free path). 
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A small parameter E = 1L-l , the Knudsen number, appears in the dimensionless variables 
in Eqs.(Z.l) 

e (a/at + u,V,)GN = J,' (F)SN + 1/86Z (2.6) 

&@/at + sV,)F = J, (F, F) 

Here and subsequently, we omit the index G accompanying the variables and functions. 
When eel, the Chapman-Enskog method enables us to construct a class of normal asymptotic 
solutions of the system of Eqs.(2.61 of the form 

6N (t, x) = 6N IO (t), 6Q, (t); 21, F (t, 5) = F [‘l' (t); xl 

and, on the basis of this system, to calculate the fluxes using formulae (2.5) and, thereby, 
to close the transport Eqs.(2.4). 

Before proceeding with the search for the normal solutions, let us first made an essential 
modification to the scheme of the Chapman-Enskog method. 

The essence of the Chapman-Enskog method lies in the fact that, under a hydrodynamic 
regime, not only the required function but also the evolutionary operator of the kinetic 
equation are expanded in series in the Knudsen number e /g/ 

a/at = d,,,iat + 8ac,,idt + 9 a(,,iat (2.7) 

The Chapman-Enskog method can also be used in the kinetic theory of non-equilibrium 
hydrodynamic fluctuations. When this is done, however, an expansion of the evolutionary 
operator which is different from (2.7) turns out to be convenient. Actually, unlike the usual 
homogeneous equations of hydrodynamics, the Langevin equations for the fluctuations are 
inhomogeneous equations. Moreover, in the general case, the inhomogeneous terms in these 
equations have increasing orders of the mean values of the hydrodynamic variables with respect 
to the gradients. On account of this the additional problem of successively taking the 
inhomogeneous terms into account arises within the framework of the standard scheme of the 
Chapman-Enskog method based on the expansion (2.7). 

The automatic ordering and allowance for the inhomogeneous terms of the hydrodynamic 
equations occurs with the modified expansion of the evolutionary operator 

ea 1 at = .5ac,,iat + e=a(,,iat + eJa,,iat (2.8) 

This expansion generates a gradient expansion of the hydrodynamic equations, unlike the 
expansion (2.7) which generates a gradient expansion of the thermodynamic fluxes, and, further- 
more, the parameter e determines the degree of inhomogeneity of the system. 

By applying the Chapman-Enskog method with the expansion (2.8) to the Boltzmann equation, 
we obtain Euler's equations in the first order with respect to 8, NSF equations in the 
second order with respect to E, the Barnett equations in the third order of e and so on. 

3. Hydrodynamic asymptotic behaviour of the solutions of the system of equations (2.6) 
in the Barnett approximation. The asymptotic expansion of the well-known solution of the 
Boltzmann equation in series in e leads to the corresponding expansion of the collision 
operator and the source term 

where the Gaussian field pair correlator 6z@iz) is determined from expression (2.2). By 
virtue of the statistical independence of the individual terms of series (3.11, we have 

(61 (l,u,)61(2,v,)) = n ~=IIe("+m)iz(61("'2)61(""2') = 

6(1-2) 5 &,'+m')l [F'"", F(m')] 
li', rn'=0 

Here, 

The asymptotic behaviour of the solutions of the first equation of (2.6) when &<I 
was matched with the formal expansion 
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8N (t, 5) = z FN~KN(“‘~’ [D(t), 6cD (t); z] 
n=o 

(3.3) 

In order to determine the coefficients of series (3.3), we employ a modified Chapman- 
Enskog scheme, in accordance with which 

calat = z m d=acnla,jat 
n=a 

The technique used to find the terms of this series is based on the use of the conditions 
for the non-decomposability of the hydrodynamic variables 

S dvY,$N’“” = 6,&z, S dvY,SN’k’2’ = 6k,6e 

S dvY,6N’k’2’ = tikO&U1; 1 = 1, 2,3; k = 0, 1,2, . . . 

and the conditions for the solvability of the integral equations for &%'W2). 
After the determination of the first M terms of series (3.3), the results of the method 

yield the expressions 

&7i = 5 6$'2'- =*iOS dv1/,mc8ci6N("'z' (3.4) 
n=ll 

which enable one to close the transport Eqs.(2.4). 
Next, according to the Chapman-Enskog method, it is necessary to substitute the expansion 

(3.1)-(3.3) and the series for d/at into the first equation of (2.6) and, when this is done, 
to obtain the equations for uN(~!Z) (n = 0, 1, 2, . .) and to solve them using the well-known 
expressions for the functions Fen). The implementation of this program is simple, but it is 
rather large and, from a procedural point of view, does not differ in any way from the known 
implementation in /5/ and /lo/. We shall therefore only present the final result. 

The expressions for the first five terms of the series (3.3) have the form 

(3.5) 

Here, use has been made of the notation 

(3.6)’ 

and aOP for the functional derivative 6Ri(P,. The symbol (.; .) denotes the inner product 
of the functions enclosed in the brackets, for example, 

By substituting expressions (3.5) into formulae (3.4), after evaluating the integrals in 
velocity space when M = 4, we get 



6Qp’a’ = - S dv’/,mc%l, [J: (F’“‘)]-1 6 J(“‘~’ = n-‘kT S duAbSJCn’*‘, 

fjp$‘2’ = - S dvmc,c, [Ji (F’0’)]-l &iJ(“‘a) = n-‘kT S dvB,16J’““’ 

A, = - [I,’ (F”‘)]-’ nck (mca/(2kT) -- ‘/s) 

B,, = - [Iv’ (F’“‘)]-’ (p/(kT)) EF:CiCj 
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(3.8) 

Here, q(k2) and PW are the Barnett additions to the thermal flux and the stress 
tensor /9/. The quantities 6qk’ and 6p,t’ are generated by the third term in 6N@) and 
are expressed in terms of the so-called modified integral brackets of the phase functions A, 

and Bt,. Such brackets can be approximately calculated by expanding the functions A, and Bh.1 
in series in Sonin polynomials /9/. When this is done, it turns out that, to a first approxi- 
mation with respect to the polynomials, the modified brackets, which form 6q,’ and Gpkl’, are 
equal to zero. 

Hence, in the third 
the transport Eqs.(2.4), 

are transformed into the 
mation 

Here, ep' is the 

order with respect to the gradients of the hydrodynamic variables, 
when account is taken of formulae (3.7) and the expressions 

(1) 
&, = P'"'6,, f Pkl + dc?, qr _ qy + qf’ 

system of linearized hydrodynamic equations in the Barnett approxi- 

&%D,/dt = &~$S'Z', + AG,, Or) =O;) + @:a'+ 0;) (3.9) 

dynamic operator of the Barnett approximation, the quantities 80) ,, 

and @:a) have been defined previously and @) and 6G, have the following components 

@f'-_O 
' 

@p' = _ p-1V.p!2' 

6Gk = -o-'Vi;;;;, 

@JF) = -- n-lVi;p - n-lp;pjui, 

6G,=0, 6G, = -nn-1V$Q~-nn-16P+jVjui 

The Gaussian properties and the space-time 8-correlation property of the quantities 6Pil 
and 6Qi follow from formulae (3.8) and the statistical properties of the random fields 
61@lZ). 

The problem of finding the pair correlators of the components of the Langevin source 6G, 
in the Barnett approximation (the third approximation of the hydrodynamic variables with 
respect to the gradients) when account is taken of formulae (1.2) reduces to the calculation 
of the pair correlators of the quantities 6P,I and SQi t apart from terms of the first 
order with respect to the gradients, since, according to (1.2), each of the components of the 
correlator <6G,(l)AG,(2)) is already of second order with respect to the gradients. 

In the Barnett approximation when account is taken of expression (3.2), representation 
(3.8) for the correlator of the fluctuating component of the thermal flux yields 

@Qic (1) SQI (2)) = @Q,, (I) PQ, (‘4YB’ = 
<~Q?'(1)6Qi"'(2)) --k @Q, (l)sQ~ (2)P 

(6Qk (1) SQI (2))(l) = (6Qc”’ (1) bQ:““(2)) + 

(SQ:'(1)6Qj" (2)) + @Qf'(l)SQl"'@)) 

(sQz'"'(1)6Qj"""'(2)) = z s clv, dL.?A&) x 

A, (~Q(61(“‘*) (1, v~)~J(~") (2, v?)) 

(3.10) 

(3.11) 

(3.12) 

Expressions which are similar in form can be obtained for the correlators <SP,,(1)6Pij(2)> 

and (6Pkl (1) SQi (2)). 
The first term in (3.10) is of zero order with respect to the gradients of the hydro- 

dynamic variables while the second term is of the first order. We note that the linear con- 
tributions in the Landau-Lifshitz formulae obtained in /5/ and /6/ simply reduce to the first 
term in expressions of the type of (3.11) although, as follows free formulae (3.121, (3.6) 
and (3.2), all three terms of this expression are of the same order of smallness. In its 
turn, it follows from this that, with the aid of the modified scheme for the Chapman-Enskog 
method, it is possible to take account of the inhomogeneous terms in the Langevin hydrodynamic 
equations more fully than was done when the standard implementation of the method was used /5, 
/6. 

According to formula (3.12), the calculation of the pair correlators reduces to the 
evaluation of the integrals in velocity space. These integrals are reduced with the help of 
formulae (3.6) and (3.2),in a similar manner to that used in 15, lO/ to two types of integral 
brackets of kinetic theory. For instance, in the case of the correlator (3.101, we have 

(6Qk(l)SQ~(2))(B~ = 6(1 - 2)~'(I)+')(1) T (l)h(T) X (3.13) 
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[b + K?lP$’ (l)lP’O’ (I)], 4hq (n/p@‘)* TK; = [A,; B,jAI] +- 

[Al; BijAh] + [Bij; AkAI] - [Ak; Bijv A!]* - [A,; Bijv A,]* - [Bij; A,, A,]* 

Similarly, for the other two correlators we find 

(6P,, (1) 6Pij (2)) = (6P,[ (1) 6Pij (2))‘B’ = 

6 (I- 2)4 (n (i))-’ p(o) (1) q (T) [@/ + K$, ijp$ (l)/p’“’ (I)] 

8 (qn/pco’)* KE, i, = [B,,; Bsd&j] + [Bij; BsdB,tI + [Bsd; Bk~Bi,l - 
[B,,; Bsd, Bij]* - [Btj; Bad, Bkll* - [Bsd; Bij, Bttll* 

(Wk (I) 6Pij t2)) = (Wk (I) spij(2)) (B) = 6 (1 - 2) (n (I))-1 q (T) K:, i,qjl), 

b*lT (??zpco))a K:, +I = [Ah.; A,Bij] + [Al; A,Bij] + [Bij; A,At] - [Ati AL, Bij]* - 
[Al; A,, Bij]* - [Bij; Ah* Al]* 

(3.14) 

(3.15) 

The functions Ak and B,, were introduced earlier on while the conventional [., *I and 
modified I*;=, .I* integral brackets of the derivatives of the velocity functions A, B and C 
are defined in the following manner /5, lo/ 

[A; B] 5 - 0’ 5 dvB (v) I,’ (F”‘) F’O’A (u) 

[A; B, C]* = - n--2 5 dv, dv,B (vl) C (vJ J;.,,, (F(O)) @“A = 

- n-2 s dvA (v) (I, (F”‘B,, F”‘C) + J, (F”‘?, F”‘B)] 

The first terms in the square brackets of formulae (3.13) and (3.14), which are generated 
by the first term in expressions of the type (3.10), correspond to the NSF approximation and 
yield the classical formulae (1.3). The second terms in the square brackets of formulae 
(3.13) and (3.14) and formula (3.15) are generated by the second terms of formulae of the 
typ of (3.10) and correspond to the Barnett approximation. Formulae (3.13)-(3.15) are 
fluctuation-dissipative relationships for the hydrodynamic stage of the evolution of a gas in 
the Barnett approximation. 

The overall structure of the correlators (3.13)-(3.15) is universal and valid for any 
interparticle interaction potentials in a gas which are consistent with the condition for the 
existence of a collision integral. The values of the tensor coefficients Kt[, Ktf,ij and K:,ij 

depend on the form of the interparticle interaction potential. In the general case, it is not 
possible to carry out a calculation of the integral brackets which form these coefficients. 
In kinetic theory, integral brackets are calculated approximately by using expansions of the 
functions which form them in series in polynomials /9/. The technical execution of such 
calculations is quite massive and we shall therefore only present the result of the calculation 
of the above-mentioned coefficients to a first approximation of the expansion of the functions 
A, and B,, in series in Sonin polynomials which corresponds to the exact result in the case 
of a gas consisting of Maxwellian molecules 

The foregoing discussion allows the conclusion to be drawn that Barnett non-equilibrium 
of a hydrodynamic system has an effect on the process of the generation of fluctuations in the 
form of a contribution to the Landau-Lifshitz formulae which is linear in the gradients. 

Eqs.(3.9), which have been obtained, and formulae (3.13)-(3.15) can be used to investigate 
the dynamics of fluctuations in slow non-isothermal flows of the continuous media considered 
in /l-3/. 

The author is grateful to his late teacher O.A. Grechannyi for the instruction and ex- 
perience which contributed to the completion of this paper. 
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MODEL OF A WEAKLY NON-LOCAL RELAXING COMPRESSIBLE MEDIUM* 

A.B. ROSHCHIN and L.M. TRUSKINOVSKII 

A model of a weakly non-local relaxing medium with viscous dispersion is 
considered. The relaxation kinetics are described by a Ginzburg-Landau 
/l/ equation which has been generalized to the case of a compressible 
medium. The special features of the propagation of planar acoustic waves 
in the medium are studied. The latter medium has an internal time scale 
which arises from the description of the relaxation kinetics and a 
spatial scale which characterizes the degree of the non-localness of the 
medium. General methods for constructing models of equilibrium non-local 
media have been developed in /2-5/. The generalization of these methods 
to the case of a relaxing medium enables one to describe the structure of 
a non-equilibrium phase discontinuity and to calculate the dissipation on 
the conversion front /6/. 

1. Let us assume that the internal energy u of a unit mass is a function of the system 
of parameters 

S@g'j~E_,, Ea.7 V&r vj~i~cc~~~~ (1.1) 

where s is the entropy per unit mass of the medium, p is the density, g+j are the con- 
travariant components of the metric tensor in the Euclidean Eulerian system of coordinates 
xi (i = 1, 2, 3), &-(a = 1, . . ., n) are additional scalar parameters (internal degreesof freedom), 
the total derivative with respect to time is denoted by a dot and Vi is a covariant derivative 
in the coordinate system xi. The thermal influx equation can be written in the farm /3, 6, 7/ 

au = p+- Pgij + tij + @) vjvi dt - p-lvk(qk + p) dt (1.2) 
where p is the pressure, ?J are the components of the viscous stress tensor, vi are the 
components of the velocity vector of the medium, $ are the components of the thermal flux 
vector, Qk are the components of the vector describing the flux of non-thermal forms of 
energy, otj are the components of the reactive stress tensor and Q" and & are functions 
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